Non-separable growth of ω with strictly positive measure

Piotr Drygier

joint work with Grzegorz Plebanek

Instytut Matematyczny Uniwersytetu Wrocławskiego

Hejnice, 2015

We are interested in the 0-dimensional compactifications of ω which are denoted by $\gamma\omega.$

We are interested in the 0-dimensional compactifications of ω which are denoted by $\gamma \omega$. Such compactification comes from Stone representation of some Boolean algebra \mathfrak{A} containing finite subsets of ω .

We are interested in the 0-dimensional compactifications of ω which are denoted by $\gamma \omega$. Such compactification comes from Stone representation of some Boolean algebra \mathfrak{A} containing finite subsets of ω .

Definition. A growth of ω is a compact set K such that there exists a compactification $\gamma \omega$ and $K \simeq \gamma \omega \setminus \omega$.

We are interested in the 0-dimensional compactifications of ω which are denoted by $\gamma \omega$. Such compactification comes from Stone representation of some Boolean algebra \mathfrak{A} containing finite subsets of ω .

Definition. A growth of ω is a compact set K such that there exists a compactification $\gamma \omega$ and $K \simeq \gamma \omega \setminus \omega$.

Definition. A measure μ is strictly positive if $\mu(U) > 0$ for any non-empty open set.

Theorem (Parovičenko). Under CH every compact space of weight at most \mathfrak{c} is a growth of ω .

Theorem (Parovičenko). Under CH every compact space of weight at most \mathfrak{c} is a growth of ω .

Corollary. Under CH a Stone space of the measure algebra is a non-separable growth of ω carrying strictly positive measure.

Theorem (Parovičenko). Under CH every compact space of weight at most \mathfrak{c} is a growth of ω .

Corollary. Under CH a Stone space of the measure algebra is a non-separable growth of ω carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure algebra is not a growth of ω .

Theorem (Parovičenko). Under CH every compact space of weight at most \mathfrak{c} is a growth of ω .

Corollary. Under CH a Stone space of the measure algebra is a non-separable growth of ω carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure algebra is not a growth of ω .

Question. Does there exists in ZFC a non-separable growth of ω carrying a strictly positive measure?

Summary

The aim is to construct the compactification $\gamma\omega$ of ω such that its remainder (i.e. $\gamma\omega \setminus \omega$) is non-separable and supports the strictly positive measure.

Summary

The aim is to construct the compactification $\gamma\omega$ of ω such that its remainder (i.e. $\gamma\omega \setminus \omega$) is non-separable and supports the strictly positive measure.

Notation.

Summary

The aim is to construct the compactification $\gamma\omega$ of ω such that its remainder (i.e. $\gamma\omega \setminus \omega$) is non-separable and supports the strictly positive measure.

Notation.

•
$$\mathcal{E} = \{A \in 2^{\omega} : \lambda(\overline{A}) = 0\},\$$

Summary

The aim is to construct the compactification $\gamma\omega$ of ω such that its remainder (i.e. $\gamma\omega \setminus \omega$) is non-separable and supports the strictly positive measure.

Notation.

•
$$\mathcal{E} = \{A \in 2^{\omega} : \lambda(\overline{A}) = 0\},\$$

•
$$\kappa_0 = \operatorname{cov}(\mathcal{E})$$

Summary

The aim is to construct the compactification $\gamma\omega$ of ω such that its remainder (i.e. $\gamma\omega \setminus \omega$) is non-separable and supports the strictly positive measure.

Notation.

•
$$\mathcal{E} = \{A \in 2^{\omega} : \lambda(\bar{A}) = 0\},\$$

•
$$\kappa_0 = \operatorname{cov}(\mathcal{E}) = \min \{ |\mathcal{U}| \colon \mathcal{U} \subseteq \mathcal{E} \text{ and } \bigcup \mathcal{U} = 2^{\omega} \},$$

Summary

The aim is to construct the compactification $\gamma \omega$ of ω such that its remainder (i.e. $\gamma \omega \setminus \omega$) is non-separable and supports the strictly positive measure.

Notation.

• λ denotes a standard product measure on 2^{ω} ,

•
$$\mathcal{E} = \{A \in 2^{\omega} : \lambda(\overline{A}) = 0\},\$$

•
$$\kappa_0 = \operatorname{cov}(\mathcal{E}) = \min \{ |\mathcal{U}| \colon \mathcal{U} \subseteq \mathcal{E} \text{ and } \bigcup \mathcal{U} = 2^{\omega} \},$$

• \mathfrak{b} denotes the minimal size of the unbounded family $\mathcal{F} \subseteq \omega^{\omega}$ ordered by \leq^* .

Remark. Observe that OCA implies $\mathfrak{b} = \omega_2$. Moreover, we can assume that $\mathfrak{c} = \omega_2$,

Remark. Observe that OCA implies $b = \omega_2$. Moreover, we can assume that $c = \omega_2$, so this construction works in the models of set theory where Stone space of measure algebra is not a growth of ω .

Remark. Observe that OCA implies $b = \omega_2$. Moreover, we can assume that $c = \omega_2$, so this construction works in the models of set theory where Stone space of measure algebra is not a growth of ω .

Theorem (D., Plebanek). Assume $\operatorname{cof}[\kappa_0]^{\leq \omega} \leq \mathfrak{b}$. There exists a Boolean algebra \mathfrak{A} such that $\operatorname{fin} \subseteq \mathfrak{A} \subseteq P(\omega)$ and a finitely additive probability measure μ on \mathfrak{A} such that

Remark. Observe that OCA implies $b = \omega_2$. Moreover, we can assume that $c = \omega_2$, so this construction works in the models of set theory where Stone space of measure algebra is not a growth of ω .

Theorem (D., Plebanek). Assume $cof[\kappa_0]^{\leq \omega} \leq \mathfrak{b}$. There exists a Boolean algebra \mathfrak{A} such that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and a finitely additive probability measure μ on \mathfrak{A} such that

• \mathfrak{A}/fin is not σ -centered,

Remark. Observe that OCA implies $b = \omega_2$. Moreover, we can assume that $c = \omega_2$, so this construction works in the models of set theory where Stone space of measure algebra is not a growth of ω .

Theorem (D., Plebanek). Assume $cof[\kappa_0]^{\leq \omega} \leq \mathfrak{b}$. There exists a Boolean algebra \mathfrak{A} such that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and a finitely additive probability measure μ on \mathfrak{A} such that

- \mathfrak{A}/fin is not σ -centered,
- $\mu(A) = 0$ if and only if A is finite

Remark. Observe that OCA implies $b = \omega_2$. Moreover, we can assume that $c = \omega_2$, so this construction works in the models of set theory where Stone space of measure algebra is not a growth of ω .

Theorem (D., Plebanek). Assume $cof[\kappa_0]^{\leq \omega} \leq \mathfrak{b}$. There exists a Boolean algebra \mathfrak{A} such that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and a finitely additive probability measure μ on \mathfrak{A} such that

- \mathfrak{A}/fin is not σ -centered,
- $\mu(A) = 0$ if and only if A is finite (μ is almost strictly positive)

Denote $\kappa = \operatorname{cof}[\kappa_0]^{\leq \omega}$.

Denote $\kappa = cof[\kappa_0]^{\leq \omega}$. We shall prove the theorem by inductive construction, gradually enlarging Boolean algebras and extending measures.

Denote $\kappa = cof[\kappa_0]^{\leq \omega}$. We shall prove the theorem by inductive construction, gradually enlarging Boolean algebras and extending measures. For any $X \subseteq \omega$ we have

$$\mathfrak{A}[X] = \{(A \cap X) \cup (A' \setminus X) \colon A, A' \in \mathfrak{A}\}.$$

Denote $\kappa = \operatorname{cof}[\kappa_0]^{\leq \omega}$. We shall prove the theorem by inductive construction, gradually enlarging Boolean algebras and extending measures. For any $X \subseteq \omega$ we have

$$\mathfrak{A}[X] = \{(A \cap X) \cup (A' \setminus X) \colon A, A' \in \mathfrak{A}\}.$$

$$\mu_*(Z) = \sup\{\mu(A) \colon A \in \mathfrak{A}, A \subseteq Z\}$$
$$\mu^*(Z) = \inf\{\mu(A) \colon A \in \mathfrak{A}, A \supseteq Z\} \quad \text{for } Z \subseteq \omega.$$

Denote $\kappa = cof[\kappa_0]^{\leq \omega}$. We shall prove the theorem by inductive construction, gradually enlarging Boolean algebras and extending measures. For any $X \subseteq \omega$ we have

$$\mathfrak{A}[X] = \{(A \cap X) \cup (A' \setminus X) \colon A, A' \in \mathfrak{A}\}.$$

$$\mu_*(Z) = \sup\{\mu(A) \colon A \in \mathfrak{A}, A \subseteq Z\}$$
$$\mu^*(Z) = \inf\{\mu(A) \colon A \in \mathfrak{A}, A \supseteq Z\} \quad \text{for } Z \subseteq \omega.$$

We can exetend measure μ on \mathfrak{A} onto a mesure $\tilde{\mu}$ on $\mathfrak{A}[X]$ by setting

$$ilde{\mu}ig((A\cap X)\cup (A'\setminus X)ig)=$$

Denote $\kappa = cof[\kappa_0]^{\leq \omega}$. We shall prove the theorem by inductive construction, gradually enlarging Boolean algebras and extending measures. For any $X \subseteq \omega$ we have

$$\mathfrak{A}[X] = \{(A \cap X) \cup (A' \setminus X) \colon A, A' \in \mathfrak{A}\}.$$

$$\mu_*(Z) = \sup\{\mu(A) \colon A \in \mathfrak{A}, A \subseteq Z\}$$
$$\mu^*(Z) = \inf\{\mu(A) \colon A \in \mathfrak{A}, A \supseteq Z\} \quad \text{for } Z \subseteq \omega.$$

We can exetend measure μ on \mathfrak{A} onto a mesure $\tilde{\mu}$ on $\mathfrak{A}[X]$ by setting

$$ilde{\mu}ig((A\cap X)\cup (A'\setminus X)ig)=\mu_*(A\cap X)+\mu^*(A'\setminus X).$$

•
$$|\mathfrak{A}_{\xi}| < \mathfrak{b}$$
,

- $\bullet \ |\mathfrak{A}_{\xi}| < \mathfrak{b},$
- μ_{ξ} is almost strictly positive,

- $\bullet \ |\mathfrak{A}_{\xi}| < \mathfrak{b},$
- μ_{ξ} is almost strictly positive,
- μ_{ν} extends μ_{ξ} for $\xi < \nu$.

- $|\mathfrak{A}_{\xi}| < \mathfrak{b}$,
- μ_{ξ} is almost strictly positive,
- μ_{ν} extends μ_{ξ} for $\xi < \nu$.

We begin with a \mathfrak{A}_0 which is countable Boolean algebra with a measure almost strictly positive.

- $|\mathfrak{A}_{\xi}| < \mathfrak{b}$,
- μ_{ξ} is almost strictly positive,
- μ_{ν} extends μ_{ξ} for $\xi < \nu$.

We begin with a \mathfrak{A}_0 which is countable Boolean algebra with a measure almost strictly positive.

On each step $\alpha+1$ of the induction we add to the algebra new set $X_{\alpha+1}$ such that

- $|\mathfrak{A}_{\xi}| < \mathfrak{b}$,
- μ_{ξ} is almost strictly positive,
- μ_{ν} extends μ_{ξ} for $\xi < \nu$.

We begin with a \mathfrak{A}_0 which is countable Boolean algebra with a measure almost strictly positive.

On each step $\alpha+1$ of the induction we add to the algebra new set $X_{\alpha+1}$ such that

• $X_{\alpha+1}$ kills a chosen countable set to be dense in Stone(\mathfrak{A}_0),

- $|\mathfrak{A}_{\xi}| < \mathfrak{b}$,
- μ_{ξ} is almost strictly positive,
- μ_{ν} extends μ_{ξ} for $\xi < \nu$.

We begin with a \mathfrak{A}_0 which is countable Boolean algebra with a measure almost strictly positive.

On each step $\alpha+1$ of the induction we add to the algebra new set $X_{\alpha+1}$ such that

- $X_{\alpha+1}$ kills a chosen countable set to be dense in Stone(\mathfrak{A}_0),
- we should be able to extend the a.s.p. measure μ_{α} to a.s.p. $\tilde{\mu}$ on $\mathfrak{A}[X_{\alpha+1}]$.

Why algebra \mathfrak{A} satisfies the condition that the Stone space of it has the desired properties?

Why algebra \mathfrak{A} satisfies the condition that the Stone space of it has the desired properties?

Take any countable set $\{p_i : i \in \omega\} \subseteq \text{Stone}(\mathfrak{A})$.

Why algebra \mathfrak{A} satisfies the condition that the Stone space of it has the desired properties?

Take any countable set $\{p_i : i \in \omega\} \subseteq \text{Stone}(\mathfrak{A})$. On step α of the induction we have added a set X which generates an open non-empty set which does not contain the points p_i .

Why algebra \mathfrak{A} satisfies the condition that the Stone space of it has the desired properties?

Take any countable set $\{p_i : i \in \omega\} \subseteq \text{Stone}(\mathfrak{A})$. On step α of the induction we have added a set X which generates an open non-empty set which does not contain the points p_i .

Question

Does there exist a ZFC construction of a non-separable growth of ω carrying a strictly positive measure?